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During that time, working on engine technology and trying to achieve maximum performance
Performance always very important
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Running at 40 FPS 
on first attempt...

... on the simulator!

When you’re on the engine team of a AAA game, you can spend a lot of time on performance. 
On the iPhone, I didn’t think I had the time
In a few days I had the prototype ported over with one small problem
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• Game loop architecture

• Rendering

• Memory

Lessons learned getting frame rate from 4 fps to ~30 fps
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Exploratory

• Turning features on and off in real time

• Works very well to get very rough 
estimates

• Simulation vs. geometry creation vs. 
rendering
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Instruments

• Versatile

• Can display frame rate, object allocations, 
memory usage, or even OpenGL calls.

• Rut it on the real device, not the simulator!



Instruments

Best way to start. 
Frame rate over time plus CPU sampler
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• TODO: Screenshot with memory leaks

Also good for tracking memory leaks (wish for more automated way though)
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Instruments

• First pass with Instruments confirmed that 
Flower Garden was simulation bound.

• Especially the matrix multiplies and 
geometry creation sections.
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Shark

• CPU usage

• More in depth than Instruments

• Can even report good info on cache misses



Shark
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CPU

• 32-bit RISC ARM 11

• 400-535Mhz

• iPhone 2G/3G and iPod 
Touch 1st and 2nd gen

This is where the biggest bottlenecks were for Flower Garden at first
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CPU (iPhone 3GS)

• Cortex-A8 600MHz

• More advanced 
architecture

Still single core
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Thumb Mode

• Turning off Thumb mode increased 
performance in Flower Garden by over 2x

• Heavy usage of floating point operations 
though

• Most games will probably benefit from 
turning it off (especially 3D games)
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Integer Divide

There is no integer divide

So plan accordingly!
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Vector FP Unit
• The main CPU has no 

floating point support.

• Compiled C/C++/ObjC 
code uses the vector 
floating point unit for any 
floating point operations.

• Can program the VFP in 
assembly for max 
performance.
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Vector FP Unit

• Big win when many floating point 
operations can be vectorized.

• Matrix multiplies, skinning, etc

• vfpmath project in Google Code



Vector FP Unit

void Matrix4Mul(const float* src_mat_1, const float* src_mat_2, 
float* dst_mat) 
{
  asm volatile (VFP_SWITCH_TO_ARM
                VFP_VECTOR_LENGTH(3)

                "fldmias  %2, {s8-s23}    \n\t"
                "fldmias  %1!, {s0-s3}    \n\t"
                "fmuls s24, s8, s0        \n\t"
                "fmacs s24, s12, s1       \n\t"
//...
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Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games
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NSTimer

• Easiest way to drive the main loop

• All the samples from Apple

m_gameLoopTimer = [NSTimer 
     scheduledTimerWithTimeInterval:animationInterval
     target:self 
	 	 selector:@selector(doFrame) 
     userInfo:nil 
     repeats:YES];

OK for games that don’t require a high/steady frame rate
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NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

• Unfortunately that 
floods the message 
queue and causes delay 
on touch events

Event

NSTimer

NSTimer

NSTimer

NSTimer

Event

The app becomes even less responsive
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Threads

• Put the game on a separate thread from 
the UI one.

• Runs as fast as possible without delays
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Threads

• Careful what you do when parsing input 
events from main thread

• Can be more complex to debug

• Running as fast as possible might not always 
be desirable (draining battery life)
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Threads

• Can also split game update and rendering in 
two different threads.

• Syncing the two is much more difficult

• Can only use one thread for each OpenGL 
context

• Theoretically best results, but maybe not 
much difference
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Thread Driving Loop
m_mainLoop = [[NSThread alloc] initWithTarget:self 
              selector:@selector(mainLoopTimer) object:nil];
[m_mainLoop start];

- (void)mainLoopTimer
{
	 while (![[NSThread currentThread] isCancelled])
	 {
	 	 [self performSelectorOnMainThread:@selector(doFrame)
             withObject:nil waitUntilDone:YES];
	 	 usleep(2000);
	 }
}

That’s what I’m using in Flower Garden
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Thread driving loop

• Can be best of both worlds

• Consistent call to main loop

• No flooding of events (cuts in line)
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CADisplayLink

• Triggered by display refresh

• Can choose to get a call every X updates

• Consistent update

• Perfect for games

m_displayLink  = [CADisplayLink displayLinkWithTarget: selfselector:@selector(mainLoop:)];
m_displayLink.frameInterval = 2;
[m_displayLink addToRunLoop :[NSRunLoopcurrentRunLoop] forMode:NSDefaultRunLoopMode];
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CADisplayLink

• Only available on SDK 3.1

• Definitely the way to go for future games



Rendering
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iPhone 3G

iPod Touch 1st, 2nd, 
and some 3rd gen



iPhone 2G
iPhone 3G

iPod Touch 1st, 2nd, 
and some 3rd gen

iPhone 3GS
High-end 3rd gen iPod 

Touch
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Game loop

• Avoid locking some resource while the 
GPU is rendering.

• Might get a small speed up by first 
presenting the frame, then updating game 
state, and finally rendering.

• Almost no difference in Flower Garden
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Rendering

• A lot of the usual advice for GPUs:

• Minimize draw primitive calls

• Minimize state changes

• ...
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Vertices

• Rendering vertices can become a 
bottleneck

• No true Vertex Buffer Objects on the 
MBX, so CPU involved in every draw call

• Fixed on the 3GS though
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Vertices

• Make vertices as small as possible

struct PetalVertex
{
#ifdef PETAL_SMALL_VERTEX
	 int16_t x, y, z;
	 int16_t u, v;
	 int16_t u1, v1;
#else
	 float x, y, z;
	 float u, v;
	 float u1, v1;
#endif
};

Need to set correct scaling/biasing matrix on the other end
Textures jumped around when made uvs a byte
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Vertices

• Align vertices on at least 4-byte boundaries

• Experiment with larger alignments
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Vertices

• Use indexed lists...

• ... ordered as if they were strips.

You get the best performance without the degenerate verts of a strip
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Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit

• But you have to be very careful

• Minimize UIKit elements on top of 
EAGLView

• Keep them opaque

• OK to have smaller EAGLView
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Use multitexturing (2 texture combiners)
Point sprites
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Memory rant

• No memory guarantees

• No idea of how much memory will be 
available

• Not even how much memory at startup!

• Sometimes I’ve seen the game start with as 
low as 3MB free memory!!!

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!
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Memory

• System notifies apps when memory is 
running low

• Apps are supposed to free as much 
memory as they can

• Horrible situation for games!
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It’s a giant game of chicken!
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Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

• When you get a warning, wait a little. 

• If free memory doesn’t increase, release 
some.

• Repeat until enough memory

Be extremely careful with that! Potential for crashes in some phones if not enough memory.
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