
Squeezing Every Drop Of 
Performance Out Of The 

iPhone

Noel Llopis
Snappy Touch

http://twitter.com/snappytouch
noel@snappytouch.com

http://gamesfromwithin.com

mailto:noel@snappytouch.com
mailto:noel@snappytouch.com


In the last 11 years I’ve made games for almost every major platform out there



In the last 11 years I’ve made games for almost every major platform out there



During that time, working on engine technology and trying to achieve maximum performance
Performance always very important



Almost a year ago I started Snappy Touch



Almost a year ago I started Snappy Touch



When you’re on the engine team of a AAA game, you can spend a lot of time on performance. 
On the iPhone, I didn’t think I had the time
In a few days I had the prototype ported over with one small problem



Running at 40 FPS 
on first attempt...

When you’re on the engine team of a AAA game, you can spend a lot of time on performance. 
On the iPhone, I didn’t think I had the time
In a few days I had the prototype ported over with one small problem



Running at 40 FPS 
on first attempt...

... on the simulator!

When you’re on the engine team of a AAA game, you can spend a lot of time on performance. 
On the iPhone, I didn’t think I had the time
In a few days I had the prototype ported over with one small problem



4 FPS!
Running at 40 FPS 
on first attempt...

... on the simulator!

When you’re on the engine team of a AAA game, you can spend a lot of time on performance. 
On the iPhone, I didn’t think I had the time
In a few days I had the prototype ported over with one small problem



Lessons learned getting frame rate from 4 fps to ~30 fps



• Performance analysis tools

Lessons learned getting frame rate from 4 fps to ~30 fps



• Performance analysis tools

• CPU 

Lessons learned getting frame rate from 4 fps to ~30 fps



• Performance analysis tools

• CPU 

• Game loop architecture

Lessons learned getting frame rate from 4 fps to ~30 fps



• Performance analysis tools

• CPU 

• Game loop architecture

• Rendering

Lessons learned getting frame rate from 4 fps to ~30 fps



• Performance analysis tools

• CPU 

• Game loop architecture

• Rendering

• Memory

Lessons learned getting frame rate from 4 fps to ~30 fps



Performance Analysis 
Tools



Exploratory



Exploratory

• Turning features on and off in real time



Exploratory

• Turning features on and off in real time

• Works very well to get very rough 
estimates



Exploratory

• Turning features on and off in real time

• Works very well to get very rough 
estimates

• Simulation vs. geometry creation vs. 
rendering



Instruments



Instruments



Instruments



Instruments



Instruments

• Versatile



Instruments

• Versatile

• Can display frame rate, object allocations, 
memory usage, or even OpenGL calls.



Instruments

• Versatile

• Can display frame rate, object allocations, 
memory usage, or even OpenGL calls.

• Rut it on the real device, not the simulator!



Instruments

Best way to start. 
Frame rate over time plus CPU sampler



Instruments

Digging deeper



Instruments

• TODO: Screenshot digging deeper

Digging deeper



Instruments

Also good for tracking memory leaks (wish for more automated way though)



Instruments

• TODO: Screenshot with memory leaks

Also good for tracking memory leaks (wish for more automated way though)



Instruments



Instruments

• First pass with Instruments confirmed that 
Flower Garden was simulation bound.



Instruments

• First pass with Instruments confirmed that 
Flower Garden was simulation bound.

• Especially the matrix multiplies and 
geometry creation sections.



Shark



Shark

• CPU usage



Shark

• CPU usage

• More in depth than Instruments



Shark

• CPU usage

• More in depth than Instruments

• Can even report good info on cache misses



Shark



CPU



CPU

This is where the biggest bottlenecks were for Flower Garden at first



CPU

• 32-bit RISC ARM 11

This is where the biggest bottlenecks were for Flower Garden at first



CPU

• 32-bit RISC ARM 11

• 400-535Mhz

This is where the biggest bottlenecks were for Flower Garden at first



CPU

• 32-bit RISC ARM 11

• 400-535Mhz

• iPhone 2G/3G and iPod 
Touch 1st and 2nd gen

This is where the biggest bottlenecks were for Flower Garden at first



CPU (iPhone 3GS)

Still single core



CPU (iPhone 3GS)

• Cortex-A8 600MHz

Still single core



CPU (iPhone 3GS)

• Cortex-A8 600MHz

• More advanced 
architecture

Still single core



Thumb Mode



Thumb Mode



Thumb Mode
• CPU has a special thumb 

mode.



Thumb Mode
• CPU has a special thumb 

mode.

• Less memory, maybe better 
performance.



Thumb Mode
• CPU has a special thumb 

mode.

• Less memory, maybe better 
performance.

• No floating point support.



Thumb Mode
• CPU has a special thumb 

mode.

• Less memory, maybe better 
performance.

• No floating point support.

• It’s on by default!



Thumb Mode
• CPU has a special thumb 

mode.

• Less memory, maybe better 
performance.

• No floating point support.

• It’s on by default!

• Potentially HUGE wins turning 
it off.



Thumb Mode
• CPU has a special thumb 

mode.

• Less memory, maybe better 
performance.

• No floating point support.

• It’s on by default!

• Potentially HUGE wins turning 
it off.



Thumb Mode



Thumb Mode

• Turning off Thumb mode increased 
performance in Flower Garden by over 2x



Thumb Mode

• Turning off Thumb mode increased 
performance in Flower Garden by over 2x

• Heavy usage of floating point operations 
though



Thumb Mode

• Turning off Thumb mode increased 
performance in Flower Garden by over 2x

• Heavy usage of floating point operations 
though

• Most games will probably benefit from 
turning it off (especially 3D games)



Integer Divide

So plan accordingly!



Integer Divide

There is no integer divide

So plan accordingly!



Vector FP Unit



Vector FP Unit
• The main CPU has no 

floating point support.



Vector FP Unit
• The main CPU has no 

floating point support.

• Compiled C/C++/ObjC 
code uses the vector 
floating point unit for any 
floating point operations.



Vector FP Unit
• The main CPU has no 

floating point support.

• Compiled C/C++/ObjC 
code uses the vector 
floating point unit for any 
floating point operations.

• Can program the VFP in 
assembly for max 
performance.



Vector FP Unit



Vector FP Unit

• Big win when many floating point 
operations can be vectorized.



Vector FP Unit

• Big win when many floating point 
operations can be vectorized.

• Matrix multiplies, skinning, etc



Vector FP Unit

• Big win when many floating point 
operations can be vectorized.

• Matrix multiplies, skinning, etc

• vfpmath project in Google Code



Vector FP Unit

void Matrix4Mul(const float* src_mat_1, const float* src_mat_2, 
float* dst_mat) 
{
  asm volatile (VFP_SWITCH_TO_ARM
                VFP_VECTOR_LENGTH(3)

                "fldmias  %2, {s8-s23}    \n\t"
                "fldmias  %1!, {s0-s3}    \n\t"
                "fmuls s24, s8, s0        \n\t"
                "fmacs s24, s12, s1       \n\t"
//...



Game Loop 
Architecture



Game loop

Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games



Game loop

Gather input

Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games



Game loop

Gather input

Update state

Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games



Game loop

Gather input

Render frame

Update state

Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games



Game loop

Gather input

Render frame

Update state

R
ep

ea
t 

60
 t

im
es

 p
er

 
se

co
nd

Main difference between games and apps is the constant amount of “stuff” happening on 
screen.
Event-driven architecture is not a very good match for games



NSTimer

OK for games that don’t require a high/steady frame rate



NSTimer

• Easiest way to drive the main loop

OK for games that don’t require a high/steady frame rate



NSTimer

• Easiest way to drive the main loop

• All the samples from Apple

OK for games that don’t require a high/steady frame rate



NSTimer

• Easiest way to drive the main loop

• All the samples from Apple

m_gameLoopTimer = [NSTimer 
     scheduledTimerWithTimeInterval:animationInterval
     target:self 
	 	 selector:@selector(doFrame) 
     userInfo:nil 
     repeats:YES];

OK for games that don’t require a high/steady frame rate



NSTimer



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event

Event



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event

Event

NSTimer



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event

Event

NSTimer

Event



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event

Event

NSTimer

Event

NSTimer



NSTimer

• Not very accurate. 
Frames can vary by as 
much as 5-10 ms!

Event

Event

NSTimer

Event

NSTimer

Event



NSTimer

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

NSTimer

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

NSTimer

NSTimer

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

NSTimer

NSTimer

NSTimer

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

NSTimer

NSTimer

NSTimer

NSTimer

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

Event

NSTimer

NSTimer

NSTimer

NSTimer

Event

The app becomes even less responsive



NSTimer

• Call it at a higher 
frequency so main loop 
is called right away.

• Unfortunately that 
floods the message 
queue and causes delay 
on touch events

Event

NSTimer

NSTimer

NSTimer

NSTimer

Event

The app becomes even less responsive



Threads



Threads

• Put the game on a separate thread from 
the UI one.



Threads

• Put the game on a separate thread from 
the UI one.

• Runs as fast as possible without delays



Threads



Threads

• Careful what you do when parsing input 
events from main thread



Threads

• Careful what you do when parsing input 
events from main thread

• Can be more complex to debug



Threads

• Careful what you do when parsing input 
events from main thread

• Can be more complex to debug

• Running as fast as possible might not always 
be desirable (draining battery life)



Threads



Threads

• Can also split game update and rendering in 
two different threads.



Threads

• Can also split game update and rendering in 
two different threads.

• Syncing the two is much more difficult



Threads

• Can also split game update and rendering in 
two different threads.

• Syncing the two is much more difficult

• Can only use one thread for each OpenGL 
context



Threads

• Can also split game update and rendering in 
two different threads.

• Syncing the two is much more difficult

• Can only use one thread for each OpenGL 
context

• Theoretically best results, but maybe not 
much difference



Thread Driving Loop

That’s what I’m using in Flower Garden



Thread Driving Loop
m_mainLoop = [[NSThread alloc] initWithTarget:self 
              selector:@selector(mainLoopTimer) object:nil];
[m_mainLoop start];

That’s what I’m using in Flower Garden



Thread Driving Loop
m_mainLoop = [[NSThread alloc] initWithTarget:self 
              selector:@selector(mainLoopTimer) object:nil];
[m_mainLoop start];

- (void)mainLoopTimer
{
	 while (![[NSThread currentThread] isCancelled])
	 {
	 	 [self performSelectorOnMainThread:@selector(doFrame)
             withObject:nil waitUntilDone:YES];
	 	 usleep(2000);
	 }
}

That’s what I’m using in Flower Garden



Thread driving loop



Thread driving loop

• Can be best of both worlds



Thread driving loop

• Can be best of both worlds

• Consistent call to main loop



Thread driving loop

• Can be best of both worlds

• Consistent call to main loop

• No flooding of events (cuts in line)



CADisplayLink



CADisplayLink

• Triggered by display refresh



CADisplayLink

• Triggered by display refresh

• Can choose to get a call every X updates



CADisplayLink

• Triggered by display refresh

• Can choose to get a call every X updates

• Consistent update



CADisplayLink

• Triggered by display refresh

• Can choose to get a call every X updates

• Consistent update

• Perfect for games



CADisplayLink

• Triggered by display refresh

• Can choose to get a call every X updates

• Consistent update

• Perfect for games

m_displayLink  = [CADisplayLink displayLinkWithTarget: selfselector:@selector(mainLoop:)];
m_displayLink.frameInterval = 2;
[m_displayLink addToRunLoop :[NSRunLoopcurrentRunLoop] forMode:NSDefaultRunLoopMode];



CADisplayLink



CADisplayLink

• Only available on SDK 3.1



CADisplayLink

• Only available on SDK 3.1

• Definitely the way to go for future games



Rendering





iPhone 2G
iPhone 3G

iPod Touch 1st, 2nd, 
and some 3rd gen



iPhone 2G
iPhone 3G

iPod Touch 1st, 2nd, 
and some 3rd gen

iPhone 3GS
High-end 3rd gen iPod 

Touch



Game loop

No multiple cores, but we have a GPU
How to parallelize the two?



Game loop

No multiple cores, but we have a GPU
How to parallelize the two?



Game loop

No multiple cores, but we have a GPU
How to parallelize the two?



Game loop

No multiple cores, but we have a GPU
How to parallelize the two?



Game loop

No multiple cores, but we have a GPU
How to parallelize the two?



Game loop



Game loop

• Avoid locking some resource while the 
GPU is rendering.



Game loop

• Avoid locking some resource while the 
GPU is rendering.

• Might get a small speed up by first 
presenting the frame, then updating game 
state, and finally rendering.



Game loop

• Avoid locking some resource while the 
GPU is rendering.

• Might get a small speed up by first 
presenting the frame, then updating game 
state, and finally rendering.

• Almost no difference in Flower Garden



Rendering



Rendering

• A lot of the usual advice for GPUs:



Rendering

• A lot of the usual advice for GPUs:

• Minimize draw primitive calls



Rendering

• A lot of the usual advice for GPUs:

• Minimize draw primitive calls

• Minimize state changes



Rendering

• A lot of the usual advice for GPUs:

• Minimize draw primitive calls

• Minimize state changes

• ...



Vertices



Vertices

• Rendering vertices can become a 
bottleneck



Vertices

• Rendering vertices can become a 
bottleneck

• No true Vertex Buffer Objects on the 
MBX, so CPU involved in every draw call



Vertices

• Rendering vertices can become a 
bottleneck

• No true Vertex Buffer Objects on the 
MBX, so CPU involved in every draw call

• Fixed on the 3GS though



Vertices

Need to set correct scaling/biasing matrix on the other end
Textures jumped around when made uvs a byte



Vertices

• Make vertices as small as possible

Need to set correct scaling/biasing matrix on the other end
Textures jumped around when made uvs a byte



Vertices

• Make vertices as small as possible

struct PetalVertex
{
#ifdef PETAL_SMALL_VERTEX
	 int16_t x, y, z;
	 int16_t u, v;
	 int16_t u1, v1;
#else
	 float x, y, z;
	 float u, v;
	 float u1, v1;
#endif
};

Need to set correct scaling/biasing matrix on the other end
Textures jumped around when made uvs a byte



Vertices

• Make vertices as small as possible

struct PetalVertex
{
#ifdef PETAL_SMALL_VERTEX
	 int16_t x, y, z;
	 int16_t u, v;
	 int16_t u1, v1;
#else
	 float x, y, z;
	 float u, v;
	 float u1, v1;
#endif
};

Need to set correct scaling/biasing matrix on the other end
Textures jumped around when made uvs a byte



Vertices



Vertices

• Align vertices on at least 4-byte boundaries



Vertices

• Align vertices on at least 4-byte boundaries

• Experiment with larger alignments



Vertices

You get the best performance without the degenerate verts of a strip



Vertices

• Use indexed lists...

You get the best performance without the degenerate verts of a strip



Vertices

• Use indexed lists...

• ... ordered as if they were strips.

You get the best performance without the degenerate verts of a strip



Mixing OpenGL and 
UIKit



Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit



Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit

• But you have to be very careful



Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit

• But you have to be very careful

• Minimize UIKit elements on top of 
EAGLView



Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit

• But you have to be very careful

• Minimize UIKit elements on top of 
EAGLView

• Keep them opaque



Mixing OpenGL and 
UIKit

• You can mix and match OpenGL 
and UIKit

• But you have to be very careful

• Minimize UIKit elements on top of 
EAGLView

• Keep them opaque

• OK to have smaller EAGLView



Use iPhone Features

Use multitexturing (2 texture combiners)
Point sprites



Use iPhone Features

Use multitexturing (2 texture combiners)
Point sprites



Use iPhone Features

Use multitexturing (2 texture combiners)
Point sprites



Memory



This makes it clear that the iPhone is NOT a game console (unfortunately)



This makes it clear that the iPhone is NOT a game console (unfortunately)



!=

This makes it clear that the iPhone is NOT a game console (unfortunately)



!=

This makes it clear that the iPhone is NOT a game console (unfortunately)



Memory rant

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!



Memory rant

• No memory guarantees

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!



Memory rant

• No memory guarantees

• No idea of how much memory will be 
available

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!



Memory rant

• No memory guarantees

• No idea of how much memory will be 
available

• Not even how much memory at startup!

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!



Memory rant

• No memory guarantees

• No idea of how much memory will be 
available

• Not even how much memory at startup!

• Sometimes I’ve seen the game start with as 
low as 3MB free memory!!!

Apple wants you to play nice and work with any amount of memory
Game developers want to count on the available memory and use it all
Clash!



Memory



Memory

• System notifies apps when memory is 
running low



Memory

• System notifies apps when memory is 
running low

• Apps are supposed to free as much 
memory as they can



Memory

• System notifies apps when memory is 
running low

• Apps are supposed to free as much 
memory as they can

• Horrible situation for games!



Memory



Memory



Memory



Memory

WARNING!!



Memory

WARNING!!



Memory



Memory

WARNING!!



Memory

WARNING!!

Wait...



Memory

WARNING!!

Wait...
... wait for it ...



Memory

WARNING!!

Wait...
... wait for it ...



Memory

WARNING!!
If you wait too long and nobody does anything, process is killed (no warning)
It’s a giant game of chicken!



Memory

WARNING!!
If you wait too long and nobody does anything, process is killed (no warning)
It’s a giant game of chicken!



Memory

WARNING!!
If you wait too long and nobody does anything, process is killed (no warning)
It’s a giant game of chicken!



Memory trick

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

• When you get a warning, wait a little. 

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

• When you get a warning, wait a little. 

• If free memory doesn’t increase, release 
some.

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

• When you get a warning, wait a little. 

• If free memory doesn’t increase, release 
some.

• Repeat until enough memory

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Memory trick

• Do you prefer to allocate your memory all 
at once at initialization time?

• Allocate memory slowly.

• When you get a warning, wait a little. 

• If free memory doesn’t increase, release 
some.

• Repeat until enough memory

Be extremely careful with that! Potential for crashes in some phones if not enough memory.



Thank you!

Twitter: @snappytouch
Email: noel@snappytouch.com

Blog: http://gamesfromwithin.com

mailto:noel@snappytouch.com
mailto:noel@snappytouch.com

