
iPhoneFP.pdf

Cranking Floating Point
Performance Up To 11

Noel Llopis
Snappy Touch

http://twitter.com/snappytouch
noel@snappytouch.com

http://gamesfromwithin.com

Tuesday, September 29, 2009

Slides will be up on my web site after the talk

mailto:noel@snappytouch.com

mailto:noel@snappytouch.com

	 	 	 void* p = &s_particles2[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0} \n\t"
	 	 	 	 "fldmias %2, {s1} \n\t"
	 	 	 	 "mov r1, %0 \n\t"
	 	 	 	 "mov r2, %0 \n\t"
	 	 	 	 "mov r3, %3 \n\t"
	 	 	 	 "0: \n\t"
	 	 	 	 "fldmias r1!, {s8-s13} \n\t"
	 	 	 	 "fldmias r1!, {s16-s21} \n\t"
	 	 	 	 "fmacs s8, s16, s0 \n\t"
	 	 	 	 "fmuls s16, s16, s1 \n\t"
	 	 	 	 "fstmias r2!, {s8-s13} \n\t"
	 	 	 	 "fstmias r2!, {s16-s21} \n\t"
	 	 	 	 "subs r3, r3, #1 \n\t"
	 	 	 	 "bne 0b \n\t"
	 	 	 	 :
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (iterations)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
);

Tuesday, September 29, 2009

I just wanted to flash that to scare people off :-)

Tuesday, September 29, 2009

In the last 11 years I’ve made games for almost every major platform out there

Tuesday, September 29, 2009

During that time, working on engine technology and trying to achieve maximum performance
Performance always very important

Tuesday, September 29, 2009

Almost a year ago I started Snappy Touch

“Don’t do that bit-
twiddling thing”

“Optimize at the
algorithm level”

Yes, but key to good performance
is looking at your data and your

target platform
Tuesday, September 29, 2009

Don’t waste time optimizing if you don’t have to
Sometimes you need performance to back up design
Also, beware optimizing the best case. Optimize the worst case!

Floating Point
Performance

Tuesday, September 29, 2009

Floating point numbers

• Representation of rational numbers

• 1.2345, -0.8374, 2.0000, 14388439.34, etc

• Following IEEE 754 format

• Single precision: 32 bits

• Double precision: 64 bits

Tuesday, September 29, 2009

Floating point numbers

Tuesday, September 29, 2009

Not necessary to understand the format, but helps a lot to understand source of problems
Single precision (32 bit) vs double (64 bits)

Why floating point
performance?

• Most games use floating point numbers for
most of their calculations

• Positions, velocities, physics, etc, etc.

• Maybe not so much for regular apps

Tuesday, September 29, 2009

CPU

• 32-bit RISC ARM 11

• 400-535Mhz

• iPhone 2G/3G and iPod
Touch 1st and 2nd gen

Tuesday, September 29, 2009

Let’s see what we have to work with

CPU (iPhone 3GS)

• Cortex-A8 600MHz

• More advanced
architecture

Tuesday, September 29, 2009

We want to optimize for the old model

CPU

• No floating point support
in the ARM CPU!!!

Tuesday, September 29, 2009

How about integer
math?

• No need to do any floating point
operations

• Fully supported in the ARM processor

• But...

Tuesday, September 29, 2009

Integer Divide

There is no integer divide

Tuesday, September 29, 2009

So plan accordingly!

Fixed-point arithmetic

• Sometimes integer arithmetic doesn’t cut it

• You need to represent rational numbers

• Can use a fixed-point library.

• Performs rational arithmetic with integer
values at a reduced range/resolution.

• Not so great...

Tuesday, September 29, 2009

Floating point support

• There’s a floating point
unit

• Compiled C/C++/ObjC
code uses the VFP unit
for any floating point
operations.

Tuesday, September 29, 2009

Sample program
	 struct Particle
	 {
	 	 float x, y, z;
	 	 float vx, vy, vz;
	 };

for (int i=0; i<MaxParticles; ++i)
{
 Particle& p = s_particles[i];
 p.x += p.vx*dt;
 p.y += p.vy*dt;
 p.z += p.vz*dt;
 p.vx *= drag;
 p.vy *= drag;
 p.vz *= drag;
}

• 14.1 seconds on an iPod Touch 2nd gen

Tuesday, September 29, 2009

Floating point support

When in doubt, check the
assembly generated

Trust no one!

Tuesday, September 29, 2009

ACTION: Go to XCode
Simulator vs. device
Release

Floating point support

Tuesday, September 29, 2009

What’s going on in there??

Thumb Mode
• CPU has a special thumb mode.

• Less memory, maybe better
performance.

• No floating point support.

• Every time there’s an fp
operation, it switches out of
Thumb, does the fp operation,
and switches back on.

Tuesday, September 29, 2009

Thumb Mode

• It’s on by default!

• Potentially HUGE wins
turning it off.

Tuesday, September 29, 2009

Thumb Mode

• Turning off Thumb mode increased
performance in Flower Garden by over 2x

• Heavy usage of floating point operations
though

• Most games will probably benefit from
turning it off (especially 3D games)

Tuesday, September 29, 2009

5.1 seconds!

Tuesday, September 29, 2009

That’s more like it!

ARM assembly

I’m not an ARM assembly expert!!!
DISCLAIMER:

Z80!!!
Tuesday, September 29, 2009

I’m saying that so you can see how anybody can get a good understand ing of that, not so
that you leave me right now :-)

ARM assembly

• Hit the docs

• References included in your USB card

• Or download them from the ARM site

• http://bit.ly/arminfo

Tuesday, September 29, 2009

I’m saying that so you can see how anybody can get a good understand ing of that, not so
that you leave me right now :-)

http://bit.ly/arminfo

http://bit.ly/arminfo

ARM assembly

• Reading assembly is a very important skill
for high-performance programming

• Writing is more specialized. Most people
don’t need to.

Tuesday, September 29, 2009

VFP unit
A0

B0
+

C0
=

A1

B1
+

C1
=

A2

B2
+

C2
=

A3

B3
+

C3
=

Tuesday, September 29, 2009

VFP unit

+

=

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

Sweet! How do we
use the vfp?

Tuesday, September 29, 2009

Single operation

 "fldmias %2, {s8-s23} \n\t"
 "fldmias %1!, {s0-s3} \n\t"
 "fmuls s24, s8, s0 \n\t"
 "fmacs s24, s12, s1 \n\t"

 "fldmias %1!, {s4-s7} \n\t"

 "fmacs s24, s16, s2 \n\t"
 "fmacs s24, s20, s3 \n\t"
 "fstmias %0!, {s24-s27} \n\t"

Like this!

Tuesday, September 29, 2009

Need to get down to the metal

Writing vfp assembly

• There are two parts to it

• How to write any assembly in gcc

• Learning ARM and VPM assembly

Tuesday, September 29, 2009

vfpmath library

• Already done a lot of work for you

• http://code.google.com/p/vfpmathlibrary

• Vector/matrix math

• Might not be exactly what you need, but it’s
a great starting point

Tuesday, September 29, 2009

http://code.google.com/p/vfpmathlibrary/

http://code.google.com/p/vfpmathlibrary/

Assembly in gcc

• Only use it when targeting the device

#include <TargetConditionals.h>
#if (TARGET_IPHONE_SIMULATOR == 0) && (TARGET_OS_IPHONE == 1)
	 #define USE_VFP
#endif

Tuesday, September 29, 2009

Assembly in gcc

• The basics

asm (“cmp r2, r1”);

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-
HOWTO.html

Tuesday, September 29, 2009

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

Assembly in gcc

• Multiple lines

asm (
 “mov r0, #1000\n\t”
 “cmp r2, r1\n\t”
);

Tuesday, September 29, 2009

Assembly in gcc
• Accessing C variables

asm (//assembly code
 : // output operands
 : // input operands
 : // clobbered registers
);

	 	 int src = 19;
	 	 int dest = 0;
	 	
	 	 asm volatile (
	 	 	 "add %0, %1, #42"
	 	 	 : "=r" (dest)
	 	 	 : "r" (src)
	 	 	 :
);

%0, %1, etc are the
variables in order

Tuesday, September 29, 2009

Assembly in gcc
	 	 int src = 19;
	 	 int dest = 0;
	 	
	 	 asm volatile (
	 	 	 "add r10, %1, #42\n\t"
	 	 	 "add %0, r10, #33\n\t"
	 	 	 : "=r" (dest)
	 	 	 : "r" (src)
	 	 	 : "r10"
);

Clobber register list
are registers used by

the asm block

volatile prevents “optimizations”

Tuesday, September 29, 2009

VFP asm
Four banks of 8 32-bit registers each

Can address them as single precision
or as doubles

Tuesday, September 29, 2009

Can control how many register to use for each operation.
Up to 8 at once!
Bank 0 is always scalar!!!

VFP asm

#define VFP_VECTOR_LENGTH(VEC_LENGTH)
 "fmrx r0, fpscr \n\t" \
 "bic r0, r0, #0x00370000 \n\t" \
 "orr r0, r0, #0x000" #VEC_LENGTH "0000 \n\t" \
 "fmxr fpscr, r0 \n\t"

Tuesday, September 29, 2009

Can control how many register to use for each operation.
Up to 8 at once!
Bank 0 is always scalar!!!

VFP asm

Bank 0 is always scalar!
Operations only work on a single bank

(wrap around possible)

Tuesday, September 29, 2009

Stride

VFP asm

Tuesday, September 29, 2009

Read the manual for the specific instructions

VFP asm
for (int i=0; i<MaxParticles; ++i)
{
 void* p = &s_particles[i];
 asm volatile (
 "fldmias %1, {s0} \n\t"
 "fldmias %2, {s1} \n\t"
 "fldmias %0, {s8-s13} \n\t"
 "fmacs s8, s11, s0 \n\t"
 "fmuls s11, s11, s1 \n\t"
 "fstmias %0, {s8-s13} \n\t"
 :
 : "r" (p), "r" (&dt), "r" (&drag)
 : "r0", "cc", "memory"
);
}

for (int i=0; i<MaxParticles; ++i)
{
 Particle& p = s_particles[i];
 p.x += p.vx*dt;
 p.y += p.vy*dt;
 p.z += p.vz*dt;
 p.vx *= drag;
 p.vy *= drag;
 p.vz *= drag;
}

Was: 5.1 seconds
Now: 2.7 seconds!!

Tuesday, September 29, 2009

VFP asm
for (int i=0; i<MaxParticles; ++i)
{
 void* p = &s_particles[i];
 asm volatile (
 "fldmias %1, {s0} \n\t"
 "fldmias %2, {s1} \n\t"
 "fldmias %0, {s8-s13} \n\t"
 "fmacs s8, s11, s0 \n\t"
 "fmuls s11, s11, s1 \n\t"
 "fstmias %0, {s8-s13} \n\t"
 :
 : "r" (p), "r" (&dt), "r" (&drag)
 : "r0", "cc", "memory"
);
}

Same every loop!

Tuesday, September 29, 2009

VFP asm
	 	 	 void* p = &s_particles[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0} \n\t"
	 	 	 	 "fldmias %2, {s1} \n\t"
	 	 	 	 "mov r1, %0 \n\t"
	 	 	 	 "mov r2, %0 \n\t"
	 	 	 	 "mov r3, %3 \n\t"
	 	 	 	 "0: \n\t"	 	 	 	
	 	 	 	 "fldmias r1!, {s8-s13} \n\t"
	 	 	 	 "fmacs s8, s11, s0 \n\t"
	 	 	 	 "fmuls s11, s11, s1 \n\t"
	 	 	 	 "fstmias r2!, {s8-s13} \n\t"
	 	 	 	 "subs r3, r3, #1 \n\t"
	 	 	 	 "bne 0b \n\t"
	 	 	 	 :
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (MaxParticles)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
);

Was: 2.7 seconds
Now: 2.7 seconds

Tuesday, September 29, 2009

That didn’t help much! What’s going on?

VFP asm
We can do 8 operations at once. So let’s try doing two

particles in a single operation.

	 struct Particle2
	 {
	 	 float x0, y0, z0;
	 	 float x1, y1, z1;
	 	 float vx0, vy0, vz0;
	 	 float vx1, vy1, vz1;
	 };

Tuesday, September 29, 2009

VFP asm
	 	 	 void* p = &s_particles2[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0} \n\t"
	 	 	 	 "fldmias %2, {s1} \n\t"
	 	 	 	 "mov r1, %0 \n\t"
	 	 	 	 "mov r2, %0 \n\t"
	 	 	 	 "mov r3, %3 \n\t"
	 	 	 	 "0: \n\t"
	 	 	 	 "fldmias r1!, {s8-s13} \n\t"
	 	 	 	 "fldmias r1!, {s16-s21} \n\t"
	 	 	 	 "fmacs s8, s16, s0 \n\t"
	 	 	 	 "fmuls s16, s16, s1 \n\t"
	 	 	 	 "fstmias r2!, {s8-s13} \n\t"
	 	 	 	 "fstmias r2!, {s16-s21} \n\t"
	 	 	 	 "subs r3, r3, #1 \n\t"
	 	 	 	 "bne 0b \n\t"
	 	 	 	 :
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (iterations)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
);

Was: 2.77 seconds

Now: 2.67 seconds

Tuesday, September 29, 2009

Barely much of an improvement!

VFP asm
What’s the loop/cache overhead?

	 	 	 for (int i=0; i<MaxParticles; ++i)
	 	 	 {
	 	 	 	 Particle* p = &s_particles[i];
	 	 	 	 p->x = p->vx;
	 	 	 	 p->y = p->vy;
	 	 	 	 p->z = p->vz;
	 	 	 }

Was: 2.67 seconds
Now: 2.41 seconds!!!!

Tuesday, September 29, 2009

VFP almost as fast as just iterating through the loop.
Calculations become almost free!!!

Tuesday, September 29, 2009

This is one pipeline
Can squeeze more performance by doing up to 3 operations at the same time

Matrix multiply

Touch: 0.0379 s
Normal: 0.0968 s
VFP: 0.0422 s

About 2x faster!

Straight from vfpmathlib

Tuesday, September 29, 2009

ACTION: Switch to XCode

Good use of vfp

• Matrix operations

• Particle systems

• Skinning

• Physics

• Procedural content generation

•

Something with lots of fp operations in a row

Tuesday, September 29, 2009

What about the 3GS?

3G 3GS
Thumb
Normal
VFP1
VFP2
VFP3
Touch

14.1 14.5

5.14 4.76

2.77 4.53

2.77 4.26

2.66 3.57

2.41 0.42

Tuesday, September 29, 2009

Matrix multiply on 3GS

3G 3GS

Normal

VFP1

VFP2

Touch

96 82

42 90

42 75

38 19

In ms

Tuesday, September 29, 2009

The vfp on the 3GS seems to be running at half the speed in comparison to the 3G
That combined with a much faster CPU, makes it pretty useless there

VFP resources

• ARM and VFP reference in your USB drive

• http://code.google.com/p/vfpmathlibrary

• http://aleiby.blogspot.com/2008/12/iphone-
vfp-for-n00bs.html

• http://www.ibiblio.org/gferg/ldp/GCC-
Inline-Assembly-HOWTO.html

Tuesday, September 29, 2009

http://code.google.com/p/vfpmathlibrary/

http://code.google.com/p/vfpmathlibrary/

http://aleiby.blogspot.com/2008/12/iphone-vfp-for-n00bs.html

http://aleiby.blogspot.com/2008/12/iphone-vfp-for-n00bs.html

http://aleiby.blogspot.com/2008/12/iphone-vfp-for-n00bs.html

http://aleiby.blogspot.com/2008/12/iphone-vfp-for-n00bs.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

More 3GS: NEON

• SIMD coprocessor

• Floating point and integer

• Huge potential

• Not many examples yet

Tuesday, September 29, 2009

Maybe next year’s 360iDev session :-)

NEON resources

• Cortex A8 reference in USB drive

• http://gcc.gnu.org/onlinedocs/gcc/ARM-
NEON-Intrinsics.html

• http://code.google.com/p/oolongengine/
source/browse/trunk/Oolong+Engine2/
Math/neonmath

Tuesday, September 29, 2009

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

http://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

Conclusions
• Turn Thumb mode off NOW

• Expect to get at least 2x performance in
older hardware by using vfp

• Not much difference in 3GS (but it’s fast
already)

• NEON SIMD tech still unused. Research
that and be the first one with the killer 3GS
app!

Tuesday, September 29, 2009

Thank you!

Noel Llopis
Snappy Touch

http://twitter.com/snappytouch
noel@snappytouch.com

http://gamesfromwithin.com

Tuesday, September 29, 2009

mailto:noel@snappytouch.com

mailto:noel@snappytouch.com

