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	 	 	 void* p = &s_particles2[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0}        \n\t"
	 	 	 	 "fldmias %2, {s1}        \n\t"
	 	 	 	 "mov r1, %0              \n\t"
	 	 	 	 "mov r2, %0              \n\t"
	 	 	 	 "mov r3, %3              \n\t"
	 	 	 	 "0:                      \n\t"
	 	 	 	 "fldmias r1!, {s8-s13}   \n\t"
	 	 	 	 "fldmias r1!, {s16-s21}  \n\t"
	 	 	 	 "fmacs s8, s16, s0       \n\t"
	 	 	 	 "fmuls s16, s16, s1      \n\t"
	 	 	 	 "fstmias r2!, {s8-s13}   \n\t"
	 	 	 	 "fstmias r2!, {s16-s21}  \n\t"
	 	 	 	 "subs r3, r3, #1         \n\t"
	 	 	 	 "bne 0b                  \n\t"
	 	 	 	 : 
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (iterations)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
	 	 	 );
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I just wanted to flash that to scare people off :-)
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In the last 11 years I’ve made games for almost every major platform out there
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During that time, working on engine technology and trying to achieve maximum performance
Performance always very important
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Almost a year ago I started Snappy Touch







“Don’t do that bit-
twiddling thing”


“Optimize at the 
algorithm level”


Yes, but key to good performance 
is looking at your data and your 


target platform
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Don’t waste time optimizing if you don’t have to
Sometimes you need performance to back up design
Also, beware optimizing the best case. Optimize the worst case!







Floating Point 
Performance
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Floating point numbers


• Representation of rational numbers


• 1.2345, -0.8374, 2.0000, 14388439.34, etc


• Following IEEE 754 format


• Single precision: 32 bits


• Double precision: 64 bits


Tuesday, September 29, 2009







Floating point numbers
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Not necessary to understand the format, but helps a lot to understand source of problems
Single precision (32 bit) vs double (64 bits)







Why floating point 
performance?


• Most games use floating point numbers for 
most of their calculations


• Positions, velocities, physics, etc, etc.


• Maybe not so much for regular apps
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CPU


• 32-bit RISC ARM 11


• 400-535Mhz


• iPhone 2G/3G and iPod 
Touch 1st and 2nd gen
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Let’s see what we have to work with







CPU (iPhone 3GS)


• Cortex-A8 600MHz


• More advanced 
architecture
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We want to optimize for the old model







CPU


• No floating point support 
in the ARM CPU!!!
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How about integer 
math?


• No need to do any floating point 
operations


• Fully supported in the ARM processor


• But...
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Integer Divide


There is no integer divide
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So plan accordingly!







Fixed-point arithmetic


• Sometimes integer arithmetic doesn’t cut it


• You need to represent rational numbers


• Can use a fixed-point library.


• Performs rational arithmetic with integer 
values at a reduced range/resolution.


• Not so great...
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Floating point support


• There’s a floating point 
unit


• Compiled C/C++/ObjC 
code uses the VFP unit 
for any floating point 
operations.
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Sample program
	 struct Particle
	 {
	 	 float x, y, z;
	 	 float vx, vy, vz;
	 };


for (int i=0; i<MaxParticles; ++i)
{
    Particle& p = s_particles[i];
    p.x += p.vx*dt;
    p.y += p.vy*dt;
    p.z += p.vz*dt;
    p.vx *= drag;
    p.vy *= drag;
    p.vz *= drag;
}


• 14.1 seconds on an iPod Touch 2nd gen
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Floating point support


When in doubt, check the 
assembly generated


Trust no one!
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ACTION: Go to XCode
Simulator vs. device
Release







Floating point support
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What’s going on in there??







Thumb Mode
• CPU has a special thumb mode.


• Less memory, maybe better 
performance.


• No floating point support.


• Every time there’s an fp 
operation, it switches out of 
Thumb, does the fp operation, 
and switches back on.
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Thumb Mode


• It’s on by default!


• Potentially HUGE wins 
turning it off.
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Thumb Mode


• Turning off Thumb mode increased 
performance in Flower Garden by over 2x


• Heavy usage of floating point operations 
though


• Most games will probably benefit from 
turning it off (especially 3D games)


Tuesday, September 29, 2009







5.1 seconds!
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That’s more like it!







ARM assembly


I’m not an ARM assembly expert!!!
DISCLAIMER:


Z80!!!
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I’m saying that so you can see how anybody can get a good understand ing of that, not so 
that you leave me right now :-)







ARM assembly


• Hit the docs


• References included in your USB card


• Or download them from the ARM site


• http://bit.ly/arminfo
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I’m saying that so you can see how anybody can get a good understand ing of that, not so 
that you leave me right now :-)



http://bit.ly/arminfo

http://bit.ly/arminfo





ARM assembly


• Reading assembly is a very important skill 
for high-performance programming


• Writing is more specialized. Most people 
don’t need to.
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VFP unit
A0


B0
+


C0
=


A1


B1
+


C1
=


A2


B2
+


C2
=


A3


B3
+


C3
=
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VFP unit


+


=


A0 A1 A2 A3


B0 B1 B2 B3


C0 C1 C2 C3


Sweet! How do we 
use the vfp?
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Single operation







                "fldmias  %2, {s8-s23}    \n\t"
                "fldmias  %1!, {s0-s3}    \n\t"
                "fmuls s24, s8, s0        \n\t"
                "fmacs s24, s12, s1       \n\t"


                "fldmias %1!,  {s4-s7}    \n\t"


                "fmacs s24, s16, s2       \n\t"
                "fmacs s24, s20, s3       \n\t"
                "fstmias  %0!, {s24-s27}  \n\t" 


Like this!
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Need to get down to the metal







Writing vfp assembly


• There are two parts to it


• How to write any assembly in gcc


• Learning ARM and VPM assembly
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vfpmath library


• Already done a lot of work for you


• http://code.google.com/p/vfpmathlibrary


• Vector/matrix math


• Might not be exactly what you need, but it’s 
a great starting point
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http://code.google.com/p/vfpmathlibrary/

http://code.google.com/p/vfpmathlibrary/





Assembly in gcc


• Only use it when targeting the device


#include <TargetConditionals.h>
#if (TARGET_IPHONE_SIMULATOR == 0) && (TARGET_OS_IPHONE == 1)
	 #define USE_VFP
#endif
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Assembly in gcc


• The basics


asm (“cmp r2, r1”);


http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-
HOWTO.html
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http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
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Assembly in gcc


• Multiple lines


asm (
    “mov r0, #1000\n\t”
    “cmp r2, r1\n\t”
);
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Assembly in gcc
• Accessing C variables


asm (//assembly code
    : // output operands
    : // input operands
    : // clobbered registers
);


	 	 int src = 19;
	 	 int dest = 0;
	 	
	 	 asm volatile (
	 	 	 "add %0, %1, #42"
	 	 	 : "=r" (dest)
	 	 	 : "r" (src)
	 	 	 :
	 	 );


%0, %1, etc are the 
variables in order
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Assembly in gcc
	 	 int src = 19;
	 	 int dest = 0;
	 	
	 	 asm volatile (
	 	 	 "add r10, %1, #42\n\t"
	 	 	 "add %0, r10, #33\n\t"
	 	 	 : "=r" (dest)
	 	 	 : "r" (src)
	 	 	 : "r10"
	 	 );


Clobber register list 
are registers used by 


the asm block


volatile prevents “optimizations”
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VFP asm
Four banks of 8 32-bit registers each


Can address them as single precision
or as doubles
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Can control how many register to use for each operation.
Up to 8 at once!
Bank 0 is always scalar!!!







VFP asm


#define VFP_VECTOR_LENGTH(VEC_LENGTH)
    "fmrx    r0, fpscr                         \n\t" \
    "bic     r0, r0, #0x00370000               \n\t" \
    "orr     r0, r0, #0x000" #VEC_LENGTH "0000 \n\t" \
    "fmxr    fpscr, r0                         \n\t"
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Can control how many register to use for each operation.
Up to 8 at once!
Bank 0 is always scalar!!!







VFP asm


Bank 0 is always scalar!
Operations only work on a single bank


(wrap around possible)
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Stride







VFP asm
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Read the manual for the specific instructions







VFP asm
for (int i=0; i<MaxParticles; ++i)
{
    void* p = &s_particles[i];
    asm volatile (
        "fldmias %1, {s0}   \n\t"
        "fldmias %2, {s1}   \n\t"
        "fldmias %0, {s8-s13}    \n\t"
        "fmacs s8, s11, s0      \n\t"
        "fmuls s11, s11, s1     \n\t"
        "fstmias %0, {s8-s13}    \n\t"
        : 
        : "r" (p), "r" (&dt), "r" (&drag)
        : "r0", "cc", "memory"
    );
}


for (int i=0; i<MaxParticles; ++i)
{
    Particle& p = s_particles[i];
    p.x += p.vx*dt;
    p.y += p.vy*dt;
    p.z += p.vz*dt;
    p.vx *= drag;
    p.vy *= drag;
    p.vz *= drag;
}


Was: 5.1 seconds
Now: 2.7 seconds!!
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VFP asm
for (int i=0; i<MaxParticles; ++i)
{
    void* p = &s_particles[i];
    asm volatile (
        "fldmias %1, {s0}   \n\t"
        "fldmias %2, {s1}   \n\t"
        "fldmias %0, {s8-s13}    \n\t"
        "fmacs s8, s11, s0      \n\t"
        "fmuls s11, s11, s1     \n\t"
        "fstmias %0, {s8-s13}    \n\t"
        : 
        : "r" (p), "r" (&dt), "r" (&drag)
        : "r0", "cc", "memory"
    );
}


Same every loop!
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VFP asm
	 	 	 void* p = &s_particles[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0}        \n\t"
	 	 	 	 "fldmias %2, {s1}        \n\t"
	 	 	 	 "mov r1, %0              \n\t"
	 	 	 	 "mov r2, %0              \n\t"
	 	 	 	 "mov r3, %3              \n\t"
	 	 	 	 "0:                      \n\t"	 	 	 	
	 	 	 	 "fldmias r1!, {s8-s13}   \n\t"
	 	 	 	 "fmacs s8, s11, s0       \n\t"
	 	 	 	 "fmuls s11, s11, s1      \n\t"
	 	 	 	 "fstmias r2!, {s8-s13}   \n\t"
	 	 	 	 "subs r3, r3, #1         \n\t"
	 	 	 	 "bne 0b                  \n\t"
	 	 	 	 : 
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (MaxParticles)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
	 	 	 );


Was: 2.7 seconds
Now: 2.7 seconds
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That didn’t help much! What’s going on?







VFP asm
We can do 8 operations at once. So let’s try doing two 


particles in a single operation.


	 struct Particle2
	 {
	 	 float x0, y0, z0;
	 	 float x1, y1, z1;
	 	 float vx0, vy0, vz0;
	 	 float vx1, vy1, vz1;
	 };
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VFP asm
	 	 	 void* p = &s_particles2[0];
	 	 	 asm volatile (
	 	 	 	 "fldmias %1, {s0}        \n\t"
	 	 	 	 "fldmias %2, {s1}        \n\t"
	 	 	 	 "mov r1, %0              \n\t"
	 	 	 	 "mov r2, %0              \n\t"
	 	 	 	 "mov r3, %3              \n\t"
	 	 	 	 "0:                      \n\t"
	 	 	 	 "fldmias r1!, {s8-s13}   \n\t"
	 	 	 	 "fldmias r1!, {s16-s21}  \n\t"
	 	 	 	 "fmacs s8, s16, s0       \n\t"
	 	 	 	 "fmuls s16, s16, s1      \n\t"
	 	 	 	 "fstmias r2!, {s8-s13}   \n\t"
	 	 	 	 "fstmias r2!, {s16-s21}  \n\t"
	 	 	 	 "subs r3, r3, #1         \n\t"
	 	 	 	 "bne 0b                  \n\t"
	 	 	 	 : 
	 	 	 	 : "r" (p), "r" (&dt), "r" (&drag), "r" (iterations)
	 	 	 	 : "r0", "r1", "r2", "r3", "cc", "memory"
	 	 	 );


Was: 2.77 seconds


Now: 2.67 seconds
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Barely much of an improvement!







VFP asm
What’s the loop/cache overhead?


	 	 	 for (int i=0; i<MaxParticles; ++i)
	 	 	 {
	 	 	 	 Particle* p = &s_particles[i];
	 	 	 	 p->x = p->vx;
	 	 	 	 p->y = p->vy;
	 	 	 	 p->z = p->vz;
	 	 	 }


Was: 2.67 seconds
Now: 2.41 seconds!!!!
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VFP almost as fast as just iterating through the loop.
Calculations become almost free!!!
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This is one pipeline
Can squeeze more performance by doing up to 3 operations at the same time







Matrix multiply


Touch: 0.0379 s
Normal: 0.0968 s
VFP: 0.0422 s


About 2x faster!


Straight from vfpmathlib
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ACTION: Switch to XCode







Good use of vfp


• Matrix operations


• Particle systems


• Skinning


• Physics


• Procedural content generation


• ....


Something with lots of fp operations in a row
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What about the 3GS?


3G 3GS
Thumb
Normal
VFP1
VFP2
VFP3
Touch


14.1 14.5


5.14 4.76


2.77 4.53


2.77 4.26


2.66 3.57


2.41 0.42
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Matrix multiply on 3GS


3G 3GS


Normal


VFP1


VFP2


Touch


96 82


42 90


42 75


38 19


In ms
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The vfp on the 3GS seems to be running at half the speed in comparison to the 3G
That combined with a much faster CPU, makes it pretty useless there







VFP resources


• ARM and VFP reference in your USB drive


• http://code.google.com/p/vfpmathlibrary


• http://aleiby.blogspot.com/2008/12/iphone-
vfp-for-n00bs.html


• http://www.ibiblio.org/gferg/ldp/GCC-
Inline-Assembly-HOWTO.html
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More 3GS: NEON


• SIMD coprocessor


• Floating point and integer


• Huge potential


• Not many examples yet
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Maybe next year’s 360iDev session :-)







NEON resources


• Cortex A8 reference in USB drive


• http://gcc.gnu.org/onlinedocs/gcc/ARM-
NEON-Intrinsics.html


• http://code.google.com/p/oolongengine/
source/browse/trunk/Oolong+Engine2/
Math/neonmath
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Conclusions
• Turn Thumb mode off NOW


• Expect to get at least 2x performance in 
older hardware by using vfp


• Not much difference in 3GS (but it’s fast 
already)


• NEON SIMD tech still unused. Research 
that and be the first one with the killer 3GS 
app!
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Thank you!


Noel Llopis
Snappy Touch


http://twitter.com/snappytouch
noel@snappytouch.com


http://gamesfromwithin.com
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